
Laravel-Metable Documentation
Release 1.0

Sean Fraser

Mar 14, 2023

Contents

1 Introduction 3
1.1 Features . 3
1.2 Installation . 3
1.3 Example Usage . 4

2 Handling Meta 5
2.1 Attaching Meta . 5
2.2 Retrieving Meta . 6
2.3 Retrieving All Meta . 7
2.4 Checking For Presence of Meta . 7
2.5 Deleting Meta . 7
2.6 Eager Loading Meta . 8

3 Querying Meta 9
3.1 Checking for Presence of a key . 9
3.2 Comparing value . 9
3.3 Ordering results . 10
3.4 A Note on Optimization . 11

4 Data Types 13
4.1 Scalar Values . 13
4.2 Objects . 14
4.3 Adding Custom Data Types . 16

5 Extending Meta 17
5.1 Adjusting Schema . 17
5.2 Adjusting the Model . 17

i

ii

Laravel-Metable Documentation, Release 1.0

Laravel-Metable is a package for easily attaching arbitrary data to Eloquent models for Laravel 5.

Contents 1

https://coveralls.io/github/plank/laravel-metable
https://styleci.io/repos/79148832
https://packagist.org/packages/plank/laravel-metable

Laravel-Metable Documentation, Release 1.0

2 Contents

CHAPTER 1

Introduction

Laravel-Metable is a package for easily attaching arbitrary data to Eloquent models for Laravel 5.

1.1 Features

• One-to-many polymorphic relationship allows attaching data to Eloquent models without needing to adjust the
database schema.

• Type conversion system allows data of numerous different scalar and object types to be stored, queried and
retrieved. See the list of supported Data Types.

1.2 Installation

1. Add the package to your Laravel app using composer

composer require plank/laravel-metable

2. Register the package’s service provider in config/app.php. In Laravel versions 5.5 and beyond, this step
can be skipped if package auto-discovery is enabled.

<?php
'providers' => [

...
Plank\Metable\MetableServiceProvider::class,
...

];

3. Publish the config file (config/metable.php) of the package using artisan.

php artisan vendor:publish --provider="Plank\Metable\MetableServiceProvider"

4. Run the migrations to add the required table to your database.

3

Laravel-Metable Documentation, Release 1.0

php artisan migrate

5. Add the Plank\Metable\Metable trait to any eloquent model class that you want to be able to attach metadata to.

1.3 Example Usage

Attach some metadata to an eloquent model

<?php
$post = Post::create($this->request->input());
$post->setMeta('color', 'blue');

Query the model by its metadata

<?php
$post = Post::whereMeta('color', 'blue');

Retrieve the metadata from a model

<?php
$value = $post->getMeta('color');

4 Chapter 1. Introduction

https://github.com/plank/laravel-metable/blob/master/src/Metable.php

CHAPTER 2

Handling Meta

before you can attach meta to an Eloquent model, you must first add the Metable trait to your Eloquent model.

<?php

namespace App;

use Plank\Metable\Metable;
use Illuminate\Database\Eloquent\Model;

class Page extends Model
{

use Metable;

// ...
}

Note: The Metable trait adds a meta() relationship to the model. However, it also keeps meta keys indexed
separately to speed up reads. As such, it is recommended to not modify this relationship directly and to instead only
use the methods described in this document.

2.1 Attaching Meta

Attach meta to a model with the setMeta()method. The method accepts two arguments: a string to use as a key and
a value. The value argument will accept a number of different inputs, which will be converted to a string for storage
in the database. See the list of a supported Data Types.

<?php
$model->setMeta('key', 'value');

5

Laravel-Metable Documentation, Release 1.0

To set multiple meta key and value pairs at once, you can pass an associative array or collection to setManyMeta().
The meta will be added to the model.

<?php
$model->setManyMeta([

'name' => 'John Doe',
'age' => 18,

]);

To replace existing meta with a new set of meta, you can pass an associative array or collection to syncMeta(). All
existing meta will be removed before the new meta is attached.

<?php
$model->syncMeta([

'name' => 'John Doe',
'age' => 18,

]);

2.2 Retrieving Meta

You can retrieve the value of the meta at a given key with the getMeta() method. The value should be returned in
the same format that it was stored. For example, if an array is set, you will receive an array back when retrieving it.

<?php

$model->setMeta('age', 18);
$model->setMeta('approved', true);
$model->setMeta('accessed_at', Carbon::now());

//reload the model from the database
$model = $model->fresh();

$age = $model->getMeta('age'); //returns an integer
$approved = $model->getMeta('approved'); //returns a boolean
$accessDate = $model->getMeta('accessed_at'); //returns a Carbon instance

//etc.

Once loaded, all meta attached to a model instance are cached in the model’s meta relationship. As such, successive
calls to getMeta() will not hit the database repeatedly.

Similarly, the unserialized value of each meta is cached once accessed. This is particularly relevant for attached
Eloquent Models and similar database-dependant objects.

Setting a new value for a key automatically updates all caches.

2.2.1 Default Values

You may pass a second parameter to the getMeta() method in order to specify a default value to return if no meta
has been set at that key.

<?php
$model->getMeta('status', 'draft'); // will return 'draft' if not set

6 Chapter 2. Handling Meta

Laravel-Metable Documentation, Release 1.0

Alternatively, you may set default values as key-value pairs on the model itself, instead of specifying them at each
individual call site. If a default has been defined from this property and a value is also passed as to the default
parameter, the parameter will take precedence.

<?php
class ExampleMetable extends Model {

use Metable;

protected $defaultMetaValues = [
'color' => '#000000'

];

//...
}

<?php
$model->getMeta('color'); // will return '#000000' if not set
$model->getMeta('color', null); // will return null if not set
$model->getMeta('color', '#ffffff'); // will return '#ffffff' if not set

Note: If a falsey value (e.g. 0, false, null, '') has been manually set for the key, that value will be returned
instead of the default value. The default value will only be returned if no meta exists at the key.

2.3 Retrieving All Meta

To retrieve a collection of all meta attached to a model, expressed as key and value pairs, use getAllMeta().

<?php
$meta = $model->getAllMeta();

2.4 Checking For Presence of Meta

You can check if a value has been assigned to a given key with the hasMeta() method.

<?php
if ($model->hasMeta('background-color')) {

// ...
}

Note: This method will return true even if a falsey value (e.g. 0, false, null, '') has been manually set for the
key.

2.5 Deleting Meta

To remove the meta stored at a given key, use removeMeta().

2.3. Retrieving All Meta 7

Laravel-Metable Documentation, Release 1.0

<?php
$model->removeMeta('preferred_language');

To remove multiple meta at once, you can pass an array of keys to removeManyMeta().

<?php
$model->removeManyMeta([

'preferred_language',
'store_currency',
'user_timezone',

]);

To remove all meta from a model, use purgeMeta().

<?php
$model->purgeMeta();

Attached meta is automatically purged from the database when a Metable model is manually deleted. Meta will not
be cascaded if the model is deleted by the query builder.

<?php
$model->delete(); // will delete attached meta
MyModel::where(...)->delete() // will NOT delete attached meta

2.6 Eager Loading Meta

When working with collections of Metable models, be sure to eager load the meta relation for all instances together
to avoid repeated database queries (i.e. N+1 problem).

Eager load from the query builder:

<?php
$models = MyModel::with('meta')->where(...)->get();

Lazy eager load from an Eloquent collection:

<?php
$models->load('meta');

You can also instruct your model class to always eager load the meta relationship by adding 'meta' to your model’s
$with property.

<?php

class MyModel extends Model {
use Metable;

protected $with = ['meta'];
}

8 Chapter 2. Handling Meta

CHAPTER 3

Querying Meta

The Metable trait provides a number of query scopes to facilitate modifying queries based on the meta attached to
your models

3.1 Checking for Presence of a key

To only return records that have a value assigned to a particular key, you can use whereHasMeta(). You can also
pass an array to this method, which will cause the query to return any models attached to one or more of the provided
keys.

<?php
$models = MyModel::whereHasMeta('notes')->get();
$models = MyModel::whereHasMeta(['queued_at', 'sent_at'])->get();

If you would like to restrict your query to only return models with meta for all of the provided keys, you can use
whereHasMetaKeys().

<?php
$models = MyModel::whereHasMetaKeys(['step1', 'step2', 'step3'])->get();

You can also query for records that does not contain a meta key using the whereDoesntHaveMeta(). Its signature
is identical to that of whereHasMeta().

<?php
$models = MyModel::whereDoesntHaveMeta('notes')->get();
$models = MyModel::whereDoesntHaveMeta(['queued_at', 'sent_at'])->get();

3.2 Comparing value

You can restrict your query based on the value stored at a meta key. The whereMeta() method can be used to
compare the value using any of the operators accepted by the Laravel query builder’s where() method.

9

Laravel-Metable Documentation, Release 1.0

<?php
// omit the operator (defaults to '=')
$models = MyModel::whereMeta('letters', ['a', 'b', 'c'])->get();

// greater than
$models = MyModel::whereMeta('name', '>', 'M')->get();

// like
$models = MyModel::whereMeta('summary', 'like', '%bacon%')->get();

//etc.

The whereMetaIn() method is also available to find records where the value is matches one of a predefined set of
options.

<?php
$models = MyModel::whereMetaIn('country', ['CAN', 'USA', 'MEX']);

The whereMeta() and whereMetaIn() methods perform string comparison (lexicographic ordering). Any non-
string values passed to these methods will be serialized to a string. This is useful for evaluating equality (=) or
inequality (<>), but may behave unpredictably with some other operators for non-string data types.

<?php
// array value will be serialized before it is passed to the database
$model->setMeta('letters', ['a', 'b', 'c']);

// array argument will be serialized using the same mechanism
// the original model will be found.
$model = MyModel::whereMeta('letters', ['a', 'b', 'c'])->first();

Depending on the format of the original data, it may be possible to compare against subsets of the data using the SQL
like operator and a string argument.

<?php
$model->setMeta('letters', ['a', 'b', 'c']);

// check for the presence of one value within the json encoded array
// the original model will be found
$model = MyModel::whereMeta('letters', 'like', '%"b"%')->first();

When comparing integer or float values with the <, <=, >= or > operators, use the whereMetaNumeric() method.
This will cast the values to a number before performing the comparison, in order to avoid common pitfalls of lexico-
graphic ordering (e.g. '11' is greater than '100').

<?php
$models = MyModel::whereMetaNumeric('counter', '>', 42)->get();

3.3 Ordering results

You can apply an order by clause to the query to sort the results by the value of a meta key.

<?php
// order by string value
$models = MyModel::orderByMeta('nickname', 'asc')->get();

(continues on next page)

10 Chapter 3. Querying Meta

Laravel-Metable Documentation, Release 1.0

(continued from previous page)

//order by numeric value
$models = MyModel::orderByMetaNumeric('score', 'desc')->get();

By default, all records matching the rest of the query will be ordered. Any records which have no meta assigned to the
key being sorted on will be considered to have a value of null.

To automatically exclude all records that do not have meta assigned to the sorted key, pass true as the third argument.
This will perform an inner join instead of a left join when sorting.

<?php
// sort by score, excluding models which have no score
$model = MyModel::orderByMetaNumeric('score', 'desc', true)->get();

//equivalent to, but more efficient than
$models = MyModel::whereHasMeta('score')

->orderByMetaNumeric('score', 'desc')->get();

3.4 A Note on Optimization

Laravel-Metable is intended a convenient means for handling data of many different shapes and sizes. It was designed
for dealing with data that only a subset of all models in a table would have any need for.

For example, you have a Page model with a template field and each template needs some number of additional fields
to modify how it displays. If you have X templates which each have up to Y fields, adding all of these as columns to
pages table will quickly get out of hand. Instead, appending these template fields to the Page model as meta can make
handling this use case trivial.

Laravel-Metable makes it very easy to append just about any data to your models. However, for sufficiently large data
sets or data that is queried very frequently, it will often be more efficient to use regular database columns instead in
order to take advantage of native SQL data types and indexes. The optimal solution will depend on your use case.

3.4. A Note on Optimization 11

Laravel-Metable Documentation, Release 1.0

12 Chapter 3. Querying Meta

CHAPTER 4

Data Types

You can attach a number of different kinds of values to a Metable model. The data types that are supported by
Laravel-Mediable out of the box are the following.

4.1 Scalar Values

The following scalar values are supported.

4.1.1 Array

Arrays of scalar values. Nested arrays are supported.

<?php
$metable->setMeta('information', [

'address' => [
'street' => '123 Somewhere Ave.',
'city' => 'Somewhereville',
'country' => 'Somewhereland',
'postal' => '123456',

],
'contact' => [

'phone' => '555-555-5555',
'email' => 'email@example.com'

]
]);

Warning: Laravel-Metable uses json_encode() and json_decode() under the hood for array serializa-
tion. This will cause any objects nested within the array to be cast to an array.

13

Laravel-Metable Documentation, Release 1.0

4.1.2 Boolean

<?php
$metable->setMeta('accepted_promotion', true);

4.1.3 Integer

<?php
$metable->setMeta('likes', 9001);

4.1.4 Float

<?php
$metable->setMeta('precision', 0.755);

4.1.5 Null

<?php
$metable->setMeta('linked_model', null);

4.1.6 String

<?php
$metable->setMeta('attachment', '/var/www/html/public/attachment.pdf');

4.2 Objects

The following classes and interfaces are supported.

4.2.1 Eloquent Models

It is possible to attach another Eloquent model to a Metable model.

<?php
$page = App\Page::where(['title' => 'Welcome'])->first();
$metable->setMeta('linked_model', $page);

When $metable->getMeta() is called, the attached model will be reloaded from the database.

It is also possible to attach a Model instance that has not been saved to the database.

<?php
$metable->setMeta('related', new App\Page);

When $metable->getMeta() is called, a fresh instance of the class will be created (will not include any at-
tributes).

14 Chapter 4. Data Types

Laravel-Metable Documentation, Release 1.0

4.2.2 Eloquent Collections

Similarly, it is possible to attach multiple models to a key by providing an instance of
Illuminate\Database\Eloquent\Collection containing the models.

As with individual models, both existing and unsaved instances can be stored.

<?php
$users = App\User::where(['title' => 'developer'])->get();
$metable->setMeta('authorized', $users);

4.2.3 DateTime & Carbon

Any object implementing the DateTimeInterface. Object will be converted to a Carbon instance.

<?php
$metable->setMeta('last_viewed', \Carbon\Carbon::now());

4.2.4 Serializable

Any object implementing the PHP Serializable interface.

<?php
class Example implements \Serializable
{

//...
}

$serializable = new Example;

$metable->setMeta('example', $serializable);

4.2.5 Plain Objects

Any other objects will be converted to stdClass plain objects. You can control what properties are stored by
implementing the JsonSerializable interface on the class of your stored object.

<?php
$metable->setMeta('weight', new Weight(10, 'kg'));
$weight = $metable->getMeta('weight') // stdClass($amount = 10; $unit => 'kg');

Note: The Plank\Metable\DataType\ObjectHandler class should always be the last entry the config/
metable.php datatypes array, as it will accept any object, causing any handlers below it to be ignored.

Warning: Laravel-Metable uses json_encode() and json_decode() under the hood for plain object
serialization. This will cause any arrays within the object’s properties to be cast to a stdClass object.

4.2. Objects 15

Laravel-Metable Documentation, Release 1.0

4.3 Adding Custom Data Types

You can add support for other data types by creating a new Handler for your class, which can take care of serializa-
tion. Only objects which can be converted to a string and then rebuilt from that string should be handled.

Define a class which implements the Plank\Metable\DataType\Handler interface and register it to the 'datatypes'
array in config/metable.php. The order of the handlers in the array is important, as Laravel-Metable will iterate
through them and use the first entry that returns true for the canHandleValue() method for a given value. Make
sure more concrete classes come before more abstract ones.

16 Chapter 4. Data Types

https://github.com/plank/laravel-metable/blob/master/src/DataType/Handler.php

CHAPTER 5

Extending Meta

Here are some mechanisms provided to customize the behaviour of this package.

5.1 Adjusting Schema

If you wish to modify the database schema of the package, it is recommended that you copy the base migration files
provided by this package into your application’s database/migration folder. If the file names match exactly, the ones
provided by this package will be ignored.

If the customization that you are applying would cause conflicts with future migrations (e.g. changing table name), then
it is recommended to set the metable.applyMigrations config to false, which will disable future migrations
from being run. Do note that you may need to apply migrations provided in future major versions of the package
manually to avoid conflicts.

5.2 Adjusting the Model

You can modify the Meta model by simply extending the class.

If you wish to use the same custom Meta subclass for all Metable models, you can register the fully-qualified class
name to the metable.model config.

If you would prefer to use different Meta subclasses for different entities (e.g. to keep data in separate tables), you
can override the Metable::getMetaClassName() method of each model to specify the desired Meta class to
use for each entity.

<?php
class UserMeta extends Meta
{

protected $table = 'user_meta';
}

(continues on next page)

17

Laravel-Metable Documentation, Release 1.0

(continued from previous page)

class ProductMeta extends Meta
{

protected $table = 'product_meta';
}

class User extends Model
{

use Metable;

protected function getMetaClassName(): string
{

return UserMeta::class;
}

}

class Product extends Model
{

use Metable;

protected function getMetaClassName(): string
{

return ProductMeta::class;
}

}

18 Chapter 5. Extending Meta

	Introduction
	Features
	Installation
	Example Usage

	Handling Meta
	Attaching Meta
	Retrieving Meta
	Retrieving All Meta
	Checking For Presence of Meta
	Deleting Meta
	Eager Loading Meta

	Querying Meta
	Checking for Presence of a key
	Comparing value
	Ordering results
	A Note on Optimization

	Data Types
	Scalar Values
	Objects
	Adding Custom Data Types

	Extending Meta
	Adjusting Schema
	Adjusting the Model

